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Résumé. 2014 Une chaîne polymérique formée de N segments s’effondre à la suite d’un abaissement brutal de
température. On montre que la cinétique de cet effondrement est un processus en deux étapes lorsque N est
beaucoup plus grand que la longueur caractéristique de reptation Ne. La première étape dure un temps
~ N2 et amène à un globule de structure froissée, ou fractale. Dans cet état, toute partie de la chaine forme
elle-même un globule de ce type ; ces parties sont isolées les unes des autres parce que la chaîne ne forme pas
un réseau fantôme. Les contours de la chmne dans le globule froissé forment une ligne fractale dont la
dimension fractale est 3, égale à la dimension d’espace. La seconde étape accroît la densité des globules par
pénétration des extrémités de la chaîne à travers les globules fractals ; elle est réalisée par reptation, dure un
temps ~ N3, et produit des noeuds dans le parcours de la chaîne.

Abstract. 2014 It is shown that the kinetics of collapse of a polymer coil consisting of N segments after an abrupt
decrease of temperature is a two-stage process if N ~ Ne. The first stage takes a time ~ N2 and leads to the
peculiar state 2014 crumpled, or fractal, globule. Any part of a chain of any scale is itself a globule in this state ;
these parts are segregated from each other in space due to the non-phantomness of a chain. The chain fold in
the crumpled globule is a fractal line with fractal dimension 3, equal to the space dimension. The second stage
is a chain knotting ; it is realized by means of reptation-like mechanism of motion, takes a time
~ N3 and is accompanied by an increase of globule density.
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Introduction.

Kinetics of collapse of a polymer coil after the

abrupt decrease of temperature or solvent quality
was investigated in [1-3]. According to the theory
proposed by de Gennes [1] the process of collapse
leads to the formation of crumples of successively
growing scale along the chain (Fig. 1). Just this

process was observed independently in numeric

experiments [2, 3]. In fact, the chain remains linear
after the formation of crumples on a minimal scale,
and a « new » chain appears to be shorter and

thicker (Fig.1b) ; this « new » chain forms crumples
again, it leads to its further shortening and thickening
(Fig. lc) and so on until the spherical globule is

formed (Fig.ld). The time of this process was

estimated in [1] and the result obtained in [1] is :

where N is the number of chain links, 0 is the ø-

temperature which is considered to be the initial

temperature before the temperature jump, AT =
0 - T ; (T 0) is the temperature jump, a is the
size of a link, and q is the viscosity of the solvent.
The topological constraints due to the non-phan-

tomness of the chain were not considered in [1]. It

was argued in [1] that Gaussian coil of N links has of
order N1/2 contacts between the chain segments, but
topological entanglements correspond to a small
fraction of these contacts of order N 1/2/ N e’ where
Ne is the well-known parameter of the reptation
model [4, 5]. It follows from the condition Ne &#x3E; 1
that for the realistic chain lengths N 1/2/ N e  1.

Therefore the topological constraints are not essen-
tial for a coil.
But in reality, during the collapse, the number of

intrachain contacts grows rapidly ; it is of order N in
the globule ; hence, the arguments cited above
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Fig. 1. - The sequential stages of collapse. (a) Initial
state ; (b), (c) Intermediate stages ; (d) Final state -

crumpled globule.

become inapplicable in the case N &#x3E; Ne and the
topological constraints become essential. (The case
N  Ne will be briefly discussed in the next section.)
We shall argue in this work that crumples of any

scale larger than Ne are impenetrable for each other
due to the topological constraints. As a result, the
self-similar process of crumpling shown in figure 1
leads to the long-living peculiar state which can be
called « crumpled globule ». The striking feature of
this state is that the chain parts of any scale larger
than Ne are segregated from each other in space.
This crumpled globule is fractal, i.e. the line present-
ing the chain trajectory on the scales corresponding
to N &#x3E; Ne is fractal with fractal dimension df = 3,
equal to the space dimension.
The subsequent relaxation of the crumpled

globule to the equilibrium is realized by means of
reptation of chain and consists of formation of

quasiknots on a chain. This process can be defined as
topological relaxation.

1. Fractal properties of the crumpled globule.

Let us consider the process of fast collapse of a
polymer chain. The regime of fast collapse is realized
when the temperature jump dT = () - T (dT:&#x3E; 0)
is large enough to form a globule, i.e. ATN"2&#x3E;&#x3E; 0
and it is fast enough to take a time to  tc where

tc a T Nz is the largest relaxation time of the

chain and z is the dynamical critical index for a coil
(z _ 2 - 3, see for example [5]). This means that in
this regime of collapse the chain ends do not take
part in the process of collapse during the temperature
jump. Therefore each finite part of a chain can be
considered as a part of an effectively infinite (or
closed) molecule without ends. Hence the topologi-
cal state of any finite part of a chain becomes well
defined : the whole chain is effectively infinite for
these time scales. Since the chains ends have not

enough time to take part in the collapse, the

topological state of the chain becomes frozen on this
stage of the process.
The process of collapse is shown in figure 1. At an

arbitrary time moment t, the chain is presented as
the chain of blobs - globules of the size r(t)
(Fig. Ib) ; these globules can be considered as new
« monomers » for the subsequent stage. These
« monomers » come into contact with each other and
stick together.

If blobs coming into contact are the usual

globulized linear chains, they could mix (without the
density and volume interactions changes but with the
entropy advantage) due to the interpenetrations of
their free ends. Such a situation is realized in a melt

of linear chains. But in our case blobs, being the
internal parts of a very long chain, do not have free
ends. Therefore the topological state of such blobs is
fixed during the time scale under consideration. Let
us now show that this circumstance leads to the

mutual segregation of blobs (in contrast to the blobs
formed from the linear chains with free ends). To
explain this segregation the following analogy is very
helpful : since the topological state of a certain blob
is fixed it can be presented as a polymer ring without
knots (1).
Due to the non-phantomness of a macromolecule,

other parts of the chain (or other blobs) form the
effective lattice of obstacles for this ring (Fig. 2b).
However it was shown in [6] that the polymer ring
without the volume interactions consisting of M links
and not entangled with the obstacles of the lattice
belongs to the same universality class as the ran-
domly branched polymer chain and has the size

(1) Generally speaking the topological state of a blob
can differ from the trivial knot but it is equivalent to the
initial topological state of a chain before the collapse
starts. It makes sense to suggest here that any finite part of
the chain in 0-conditions (before the collapse) do not
contain knots. This suggestion is justified by the results of
numeric experiments [7, 9] as well as empiric equation [8]
which estimate the probability of knot formation in the
course of chain cyclisation in 0-conditions. Thus it is

natural to suppose that the initial topological state of the
chain is trivial (without knots) on any finite scale.
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Fig. 2. - (a) The interpenetration of two different parts
of a chain in the crumpled globule ; (b) The chain plays
role of an array of obstacles for its part denoted by thick
line.

Since R (0) is the equilibrium size of a ring chain in
the lattice of obstacles, the entropy of this ring
plotted as a function of the chain size R reaches its
maximum when R = R (0). At the same time the
excluded volume effects lead to the relation

Because of the inequality R (M) :&#x3E; R (Q)(M) for

large enough M further swelling of the chain will
lead to further decrease of entropy. This means that
the penetration of loops stretched from one blob
into another one becomes entropically unfavourable
and the segregation of blobs occurs.

For short enough chains the topological segre-
gation of blobs does not take place because of the
small number of topological constraints. Let us

determine the crossover scale on which the segre-
gation of blobs begins.

First of all we define the average number of chain

monomers g between two neighbouring contacts of
one part of the chain with another ones. The scale g
depends on the globule density n. For a compact
globule (which is similar to the melt) g == 1 ; but if
the density of the globule, n, is small (na3  1) then
the chain part of g links in such a globule is

Gaussian-like and its size can be estimated as

Rg = ag 112. Thus we obtain :

We can represent the globule (as well as the

polymer melt or a semidilute solution) as a densely
packed system of g-link blobs [11, 12]. The average
number of contacts for each blob is of order of unity
but only a small fraction of order 1 of the totaly 

Ne
number of contacts leads to the topological con-
straints. Therefore we can conclude that the chain

part of g* = gN e links leads to one entanglement.
On the scales (along the chain) less than g * the

topological constraints are negligible and the chain
parts of lengths less than g * form the usual equilib-
rium globules.
Let us introduce B and C-the two- and three-body

interaction constants respectively. As usual, slightly
below 8-point we have

The density of the equilibrium globule is deter-
mined as follows [12]

The volume of the globule of g * links is of order
I I B 

9T and its size is j
n,,
Substituting the estimate (1.3) into the latter formula
we obtain the relation which is valid slightly below
the 0-point

For the kinetics of collapse of macromolecules the
topological constraints are negligible up to the scales
on which the thickness of effective chain r(t) (see
Fig. 2b) is less than Rg*. Therefore if the chain

length is less than g *, i.e. if the inequality

is valid then the topological constraints do not play a
role neither in the kinetics of collapse of macromol-
ecule nor in the formation of globule structure. In
this case the results of de Gennes [1] can be applied
without any change.

Let us now consider long enough chains, i.e.

We define the « topological blob », as the equilib-
rium globule of g * links (having the size Rg*).
Actually when the process of collapse reaches scales
greater than g * each g*-link part of the chain

produces approximately one entanglement, i.e. each
topological blob fills one cell of the effective lattice
of obstacles (Fig. 3).

If we now consider the subchain of s topological
blobs (i.e. the chain consisting of sg * monomers)
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Fig. 3. - Topological blob consisting of g * = N e g
monomers in an effective lattice of obstacles with the size

of the cell of order RA* = - .neq 

then we can apply the arguments connected with
equations (1.1) and (1.2). Actually, because the

density of the system cannot exceed n the size of the
chain of sg * monomers is in any case larger than

The swelling of such subchain due to the inter-
penetration of loops in the effective lattice of

obstacles is entropically unfavourable if

Rsg* &#x3E; S1l4 Rg*, i.e. for any s &#x3E; 1.

Thus the chain part of length sg * (for any
s &#x3E; 1) will not mix with other chain parts and will be
segregated in space from other such blobs.

All these conjectures hold true if we consider two
neighbouring (along the chain) topological blobs.
A part of the chain cannot be transferred from one

blob to another because this will lead to density
fluctuations (2).
So we come to the conclusion that during the

collapse all chain parts on scales larger than

g * remain segregated and preserve their structure
which was formed previously. As a result the process
of collapse of long enough chains (N &#x3E;&#x3E; g * ) leads to
the folding of the chain into the self-similar structure
which can be represented as a scale invariant system
of mutually segregated for any scale (larger than
g *) crumples.

It is interesting to note that the trajectory of chain
on scales g *  g  N is analogous to Peano curve
[10] which fills the square and has crumples on any
scale. The fractal (Hausdorff) dimension df of this
line can be estimated as follows. Every part of the
chain having m &#x3E; g * segments is a globule itself
since it became compact after the process of crump-

(2) If one of the blobs contains a knot in the initial state

(before the collapse) then they may mix making this knot
common, i.e. enlarging the scale of this knot. But as was
mentioned above it is natural to consider the initial state of
the chain to be trivial.

ling of neighbouring parts of the chain of scale of
order m is completed. The size of this part is

Rm = ( m/n )1/3. The fractal dimension of a line is
n 

determined via the relation (Rm)df = m ; hence :

This result for the crumpled globule should be
compared with analogous estimates for equilibrium
globules. It is well known (see, for example,
[11, 12]) that from the local point of view (i.e. for
scales less than the size of the whole equilibrium
globule), the equilibrium globule is analogous to the
polymer melt and the Flory theorem is valid. It

means that the chain statistics of that globule is

Gaussian up to scales equal to the size of the whole
globule. Thus the structures of the crumpled globule
and the equilibrium globule differ drastically for

scales g &#x3E; g *.
Now we can define the scale g * as the crossover

scale where the fractal dimension changes :

2. The density of the crumpled globule.

The time scales at which the crumpled globule state
exists is restricted by the time during which the
topological structure (trivial in our case) remains
without changes. On these time scales the chain ends
have not enough time to take part in the collapse.
Therefore the crumpled globule formed from the
linear chain is a partially equilibrium system with a
fixed topology. (This state would be equilibrium for
the ring or infinite polymer chain where the free
ends are absent).
The density of the crumpled globule n and its

volume V = - can be obtained from the minimis-
n

ation of the free energy of a globule. The total free
energy F = Fint - TS includes the volume interac-
tion term F;nt as well as the entropy loss S due to the
formation of crumples on any scales greater than
g *.
The free energy of volume interactions slightly

below the 8-point (na3  1) can be written in the
usual form :

The entropy loss due to the formation of crumples
can be roughly estimated as follows

(~ one entropy unit per crumple of minimal scale
g *).
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Substituting equation (1.3) into equation (2.2)
and minimising the free energy of the system under
the condition nV = N we obtain the following
estimation for the globule density n.

This result must be compared with equation (1.5)
which determines the density of the equilibrium
large globule [12].

It can be easily seen that

It should be noted that according to [13] the ratio
C (which determines in some sense the stiffness of
a6
the chain) for all experimentally available chains lies

in an interval 25  a 6  500 and thus the difference
C

in densities of the crumpled globule and the equilib-
rium one is essential especially for stiff enough
chains.
Now we can make a correction to the estimation

of the time of collapse which was made in [1]. This
correction is due to the fact that the process of fast

collapse leads to the fractal crumpled globule state
instead of equilibrium one. Thus

(we use here the estimation of t(0)collapse in the form

In the work [1] and in equation (0.1) the relation
6 a 3 

1 was implied).c was implied). 

3. Topological relaxation of the crumpled globule.

In the case N &#x3E; Ne (more exactly in the case

N &#x3E;&#x3E; g *) the subsequent relaxation of the crumpled
globule to the equilibrium one is realized due to the
penetration of the ends of the chain through the
fractal crumples. Such a mechanism of motion

resembles the reptation-like motion of the chain
consisting of « topological blobs » which takes place
in an effective lattice of obstacles or in a « tube »

formed by the chain itself.
The time of topological relaxation can be esti-

mated as the reptation time of the chain of blobs on

its total length N . The relaxation time of one
9* 

(0)topological blob can be estimated as t(0)collapse (g * ) and
for a chain of N segments in the lattice of obstaclesg*
(one entanglement per blob) the relaxation time is of
order (;) 3. Therefore we obtain the total

9* 
topological relaxation time ttop :

It should be stressed that ttop - N 3 while

tcollapse - N2- This fact makes meaningful the con-
sideration of collapse and topological relaxation as
two processes separate in time (in case N &#x3E; g *). (It
is easy to verify that if N - g *, then tt.p - t(0)collapse ,
which means that in this case there is no reason to
consider the kinetics of coil-globule transition as a
two-stage process).

Conclusion.

Predictions concerning the process of collapse of
long enough chains (N &#x3E; Ne) as well as properties
of transient structures can be formulated now :

1) the kinetics of the coil-globule transition which
takes place after abrupt decrease of temperature in
the case N &#x3E; Ne must include two stages : at first the
crumpled globule is formed, then the topological
relaxation to the equilibrium state occurs ;

2) the density of the crumpled globule (especially
- for stiff enough chains) is less then the density of
the equilibrium globule ;

3) the fractal properties of the line describing the
fold of a chain in the crumpled globule are not trivial
and differ drastically from those of an equilibrium
globule ;

4) the collapse of a ring polymer without knots is
a one-stage process ; in the case N &#x3E; Ne the final
structure is the crumpled globule. (This point will be
discussed in detail in a forthcoming article).
The justification of these predictions in real or

numeric experiments seems to be, from our point of
view, an important step to estimate the adequacy of
the concept of a crumpled globule suggested in this
article.

It should be stressed that qthe concept of crumpled
globule may be especially useful in the investigation
of the structure of biopolymers (in particular DNA
and proteins) where the hierarchy of structural levels
is a well-known fact (e.g. nucleosome structure of
chromatin and secondary, supersecondary and ter-
tiary structures in proteins [14]).



2100

References

[1] DE GENNES, P. G., J. Phys. Lett. 46 (1985) L-639.
[2] BIRSTEIN, T. M., GRIDNEV, V. N., SKVORTSOV,

A. M., Mol. Biol. (USSR) 15 (1981) 394.
[3] BIRSTEIN T. M., GRIDNEV V. N., SKVORTSOV

A. M., Vysocomolek. Soed. (USSR) 23A (1981)
297.

[4] DOI, M., EDWARDS, S. F., J. Chem. Soc. Faraday II
74 (1978) 1789, 1802, 1818.

[5] DE GENNES, P. G., Scaling Concepts in Polymer
Physics, (Cornell Univ. Press, Ithaca, N.Y.)
1979.

[6] KHOKHLOV, A. R., NECHAEV, S. K., Phys. Lett.

112A (1985) 156 ;
NECHAEV, S. K., SEMENOV, A. N., KOLEVA, M. K.,

Physica 140A (1987) 506.
[7] FRANK-KAMENETSKII, M. D., VOLOGODSKII, A. V.,

Usp. Fiz. Nauk (USSR) 134 (1981) 641.

[8] LE BRET, M., Biopolymers 19 (1980) 619.
[9] VOLOGODSKII, A. V., Private communication.

[10] MANDELBROT, B., Fractals : Form, Chance, Dimen-
sion, (W. H. Freeman &#x26; Co. S.F.) 1977.

[11] LIFSHITZ, I. M., GROSBERG, A. Yu., KHOKHLOV,
A. R., Rev. Mod. Phys. 50 (1978) 683.

[12] GROSBERG, A. Yu., KHOKHLOV, A. R., Sov. Scient.
Rev. Phys. Rev., I. M. Khalatnikov Ed., (Har-
word Academic Publishers) 8 (1987) 147.

[13] GROSBERG, A. Yu., ZHESTKOV, A. V., KUZNETSOV,
D. V., Vysokomolek. Soed. (USSR) 28A (1986)
1397.

[14] KREIGHTON, T. E., Proteins: Their Structure and
Molecular Properties (W. H. Freeman &#x26; Co.

S.F.) 1984.


